SOUTENANCE DE THESE
29/04/2015
VECCHIOLA Aymeric 29/04/15 Salle des Conseils, Labo GeePs à 14h.

SUJET : Développement d’une imagerie de résistance électrique locale par AFM à pointe conductrice en mode contact intermittent

Sous la direction de M – Mme : Frédéric Houzé
Son directeur de recherches.
SOUTENANCE DE THESE AYANT POUR JURY :
(indiquer les noms par ordre alphabétique)
• Damien BARAKEL
• Alain BOSSEBOEUF
• Jacques COUSTY
• Brice GAUTIER
• Louis PACHECO

RESUME
Le microscope à force atomique (AFM) permet de caractériser avec une excellente résolution spatiale les surfaces d’échantillons de différentes natures et peut être mis en œuvre dans des milieux variés. Cette versatilité a favorisé le développement d’un grand nombre de techniques dérivées, destinées à investiguer diverses propriétés physiques locales. Le LGEP a ainsi réalisé un module, le Résiscope, capable de mesurer la résistance électrique locale à la surface d’un échantillon polarisé en continu, sur une gamme de 11 décades. Mise au point en mode contact, où la pointe exerce en permanence une force sur l’échantillon, cette technique fonctionne très bien sur des matériaux durs, mais trouve ses limites sur des échantillons mous ou fragiles puisque dans certaines conditions, la pointe peut altérer leur surface. Pour de tels échantillons, un mode contact intermittent, dans lequel la pointe vient à intervalles réguliers toucher très brièvement la surface, est plus approprié, mais complique la réalisation des mesures électriques. Le but de la thèse consistait à lever cette difficulté en modifiant le Résiscope pour pouvoir l’associer au « Pulsed Force Mode », mode intermittent où la pointe oscille à une fréquence de 100Hz à 2000Hz.
Différentes évolutions matérielles et logicielles ont été apportées pour permettre le suivi temporel détaillé du signal de résistance électrique à chaque établissement/rupture de contact (indispensable pour passer en revue les phénomènes liés à l’intermittence), de même que pour pouvoir travailler à des vitesses de balayage acceptables. Pour l’imagerie, les meilleurs contrastes ont été obtenus grâce à une électronique de synchronisation et de traitement prenant en compte les valeurs de résistance électrique à des moments bien précis.
Pour tester ce nouveau système, nous avons dans un premier temps comparé les courbes de résistance et de déflexion que nous obtenons par ce mode avec celles considérées classiquement dans le mode approche-retrait. Nous avons ensuite étudié l’influence des principaux paramètres (fréquence et amplitude d’oscillation, force d’appui, type de pointe, etc) sur les mesures topographiques et électriques, en utilisant le HOPG comme matériau de référence. Ces essais ont notamment permis de mettre en évidence un retard quasi systématique du signal électrique par rapport au signal de déflexion (autre que le temps de mesure propre au Résiscope), dont nous n’avons pu élucider l’origine.
Une fois ces connaissances acquises, nous avons étudié deux types d’échantillons organiques, l’un à caractère académique – des monocouches auto-assemblées d’alcanethiols (SAMs), l’autre à finalité plus applicative – des couches minces formées d’un réseau interpénétré de deux constituants (P3HT:PCBM) destinées aux cellules photovoltaïques. Dans les deux cas nous avons montré la pertinence de l’outil Résiscope en mode intermittent pour obtenir des informations qualitatives et quantitatives. Parallèlement à ces travaux sur matériaux fragiles, nous avons mené une étude annexe sur un phénomène de croissance de matière à caractère isolant constaté dans des conditions particulières sur différents matériaux durs, qui a été interprété comme la formation de polymère de friction sous l’effet des nano-glissements répétés associés à la déflexion du levier.
Ces travaux ont été réalisés dans le cadre d’une convention CIFRE avec la société Concept Scientifique Instruments, adossée au projet ANR « MELAMIN » (P2N 2011).