SOUTENANCE DE THESE
12/06/2015
NIE Qiong 12/06/15 PSUD BAT DIGITEO N° 660 à 10h.

SUJET: Cumulative methods for image based Driver Assistance Systems: applications to egomotion estimation, motion analysis and object detection.

Sous la direction de M Alain Mérigot et Mme Samia Bouchafa-Bruneau ses directeurs de recherches.
SOUTENANCE DE THESE AYANT POUR JURY :
(indiquer les noms par ordre alphabétique)
• Didier AUBERT, directeur de recherche, rapporteur
• Samia BOUCHAFA-BRUNEAU, Professeur, directeur de thèse
• Séverine DUBUISSON, Maître de conférences HDR, rapporteur
• Vincent FREMONT, Maître de conférences HDR, examinateur
• Sylvie LELANDAIS, Professeur, examinateur
• Alain MERIGOT, Professeur, directeur de thèse
 

RESUME
La thèse porte sur la détection d’objets à partir d’une caméra embarquée sur un véhicule mobile en exploitant l’approche monoculaire « c-vélocité ». Cette méthode s’inspire de la méthode appelée « v-disparité » utilisée en stéréovision : toutes deux ont pour objectif la détection d’objets en les approximant par des plans d’orientations différentes, ce qui permet d’éviter, en monoculaire, d’estimer la profondeur. Ces deux approches, monoculaires et binoculaires, permettent de transformer le problème complexe de la détection d’objets en un problème plus simple de détection de formes paramétriques simples (droites, paraboles) dans un nouvel espace de représentation où la détection peut être réalisée à l’aide d’une transformée de Hough. La « c-vélocité », pour être efficace, requiert un calcul assez précis du flot optique et une bonne estimation de la position du Foyer d’expansion (FOE). Dans cette thèse, nous avons étudié les approches existantes de calcul de flot optique et sommes arrivés à la conclusion qu’aucune n’est vraiment performante notamment sur les régions homogènes telle que la route dans les scènes qui correspondent à l’application que nous visons à savoir : les véhicules intelligents. Par ailleurs, les méthodes d’estimation du flot optique peinent également à fournir une bonne estimation dans le cas de déplacement importants dans les régions proches de la caméra. Nous proposons dans cette thèse d’exploiter à la fois un modèle 3D de la scène et une estimation approximative de la vitesse du véhicule à partir d’autres capteurs intégrés. L’utilisation de connaissances a priori permet de compenser le flot dominant pour faciliter l’estimation de la partie résiduelle par une approche classique. Par ailleurs, trois approches différentes sont proposées pour détecter le foyer d’expansion. Parmi elles, nous proposons une méthode novatrice permettant d’estimer le FOE en exploitant la norme du flot et la structure de la scène à partir d’un processus « c-vélocité » inversé. En plus d’améliorer ces étapes préliminaires, nous proposons aussi l’optimisation et l’accélération de l’algorithme « c-vélocité » par une implémentation multithread. Enfin, nous proposons une modification de l’approche c-vélocité d’origine afin d’anticiper une éventuelle coopération mouvement/stéréo, proposée en perspective, à travers un jumelage avec la v-disparité.